Global Odd Index

The Professional Athlete Index

In this Olympic year, we wanted to understand the statistics behind truly mastering a sport and to celebrate the achievements of the few who do, by calculating the chances of someone being a professional athlete in their country of birth. We then added to the study by calculating where most professionals come from for a range of globally popular sports.

Making it to the top of a sport requires decades of extreme dedication and many thousands of hours of training and practice, which must all be in addition to a complementary set of in-built physical features that mean some people, and not others, have the tools to succeed.

Beyond physical attributes, your country of birth can heavily influence whether the ecosystem is favourable to excelling in a sport. An almost religious love of football across the nation ensures Brazil continues to produce elite footballers by the hundreds, despite limited investment in youth academies in comparison with other countries.

In many places, a sport’s popularity dictates how much financial investment it receives, and these factors combine to facilitate easier progression for budding athletes under the right conditions, or hinder those without.

Make it through these challenges to the upper stratosphere of athletes and you are still at the mercy of injuries or poor form that can limit performance levels and success.

There are obstacles at every turn, meaning only a tiny fraction of amateur sportsmen and women ever turn professional. Here are the probabilities of becoming a professional in a range of globally popular sports around the world.

Tennis

Current world number one Novak Djokovic

Tennis is played by 87 million people around the world, with more than half of those from China, India or the US. The ATP Tour, which includes the biggest tournaments on the professional calendar, features over 1,800 players. Roger Federer and Rafael Nadal share the record for the number of Grand Slam wins in history at 20 each, with Novak Djokovik just behind on 19. The trio have dominated tennis for almost two decades, and all of them measure between 1.85m-1.88m in height, which is something of a sweet spot for tennis players. Only 5 male players measuring under 1.83m have entered the sport’s top 10 since 2010, and only 5 male players shorter than this have won Wimbledon since 1980. The odds of reaching this height are small. In the US, for example, just 14.7% of adult men exceed this height. 

Percentage of top tier tennis players

This map shows the percentage of current top tier tennis players that come from each country.

Country
Percentage of top tier tennis players globally
Percentage of top tier tennis players globally
USA
9.59%
Italy
7.13%
France
6.53%
Spain
4.78%
Germany
4.53%
Argentina
3.76%
Russia
3.65%
UK
3.58%
3.05%
India
2.28%
Netherlands
2.18%
Brazil
2.07%
Czech Republic
2.00%
Romania
1.79%
Ukraine
1.62%
China
1.58%
Belgium
1.54%
Switzerland
1.47%
Serbia
1.47%
Sweden
1.40%
Canada
1.37%
Croatia
1.30%
Poland
1.30%
Australia
1.26%
Austria
1.26%
South Korea
1.23%
Slovakia
1.23%
Portugal
1.16%
Israel
0.95%
Mexico
0.91%
Bulgaria
0.88%
Colombia
0.81%
Thailand
0.81%
Turkey
0.81%
South Africa
0.77%
Taiwan
0.74%
Chile
0.70%
Hungary
0.70%
Egypt
0.67%
Belarus
0.63%
Finland
0.63%
Uzbekistan
0.60%
Greece
0.60%
Kazakhstan
0.56%
Peru
0.53%
Morocco
0.49%
Lithuania
0.46%
New Zealand
0.46%
Slovenia
0.46%
Bolivia
0.42%
Ecuador
0.42%
Estonia
0.42%
Tunisia
0.39%
Bosnia
0.35%
Dominican Republic
0.35%
Uruguay
0.32%
Georgia
0.28%
Hong Kong
0.28%
Latvia
0.28%
Ghana
0.25%
Norway
0.25%
Denmark
0.21%
Ireland
0.21%
Macedonia
0.21%
Philippines
0.21%
Indonesia
0.18%
Moldova
0.18%
Nigeria
0.18%
Cyprus
0.14%
Iran
0.14%
Kenya
0.14%
Bahamas
0.11%
Vietnam
0.11%
Algeria
0.11%
Malaysia
0.11%
Cuba
0.07%
Luxembourg
0.07%
Paraguay
0.07%
El Salvador
0.07%
Barbados
0.04%
Ivory Coast
0.04%
Costa Rica
0.04%
Guatemala
0.04%
Haiti
0.04%
Jamaica
0.04%
Namibia
0.04%
Puerto Rico
0.04%
Albania
0.00%
Cameroon
0.00%
Ethiopia
0.00%
Iceland
0.00%
Montenegro
0.00%
Panama
0.00%
Saudi Arabia
0.00%
Senegal
0.00%
Trinidad & Tobago
0.00%
Afghanistan
%
Angola
%
Armenia
%
Azerbaijan
%
Bangladesh
%
Belize
%
Benin
%
Bhutan
%
Botswana
%
Brunei Darussalam
%
Burkina Faso
%
BDI
%
Cambodia
%
Central African Republic
%
Chad
%
Democratic Republic of the Congo
%
Djibouti
%
East Timor
%
Equatorial Guinea
%
Eritrea
%
Fiji
%
French Southern and Antarctic Lands
%
Gabon
%
Gambia
%
Greenland
%
Guinea
%
Guinea Bissau
%
Guyana
-%
Honduras
%
Iran
%
Iraq
%
Jordan
%
Kuwait
%
Kosovo
%
Kyrgyzstan
%
Laos
%
Lebanon
%
Lesotho
%
Liberia
%
Libya
%
Madagascar
%
Malawi
%
Mali
%
Mauritania
%
Mongolia
%
Mozambique
%
Myanmar
%
Nepal
%
New Caledonia
%
Nicaragua
%
Niger
%
North Korea
%
Northern Cyprus
%
Oman
%
Pakistan
%
Papua New Guinea
%
Qatar
%
Republic of the Congo
%
Rwanda
%
Sierra Leone
%
Solomon Islands
%
Somalia
%
South Sudan
%
Sri Lanka
%
Somaliland
%
Sudan
%
Suriname
-%
Swaziland
%
Syria
%
Tajikistan
%
Tanzania
%
Togo
%
Turkmenistan
%
Uganda
%
United Arab Emirates
%
Vanuatu
%
West Bank
%
Venezuela
%
Western Sahara
%
Yemen
%
Zambia
%
Zimbabwe
%
Falkland Islands
%
Odds of being a top tier tennis player (1:X)

This map shows the odds of being a top tier tennis player in each country, ranked in order of probability. 1 in 7,823 men born in Estonia in the study’s age bracket are top tennis players, the best odds in the world.

Country
Odds of being a top tier tennis player (1:X)
Odds of being a top tier tennis player (1:X)
Estonia
7,822
Croatia
8,510
Slovenia
9,617
Serbia
9,794
Slovakia
9,916
Czech Republic
11,810
Bahamas
12,427
Switzerland
12,689
Luxembourg
15,589
Cyprus
15,681
Barbados
15,738
Austria
15,776
Finland
16,699
Sweden
16,952
Belgium
17,713
Italy
17,890
Latvia
19,033
Spain
19,138
Bulgaria
19,985
Lithuania
20,420
Bosnia
20,443
Netherlands
21,248
Australia
21,983
Namibia
22,644
Portugal
23,060
France
26,639
Macedonia
28,858
New Zealand
29,367
Israel
30,906
Romania
31,154
Hungary
35,421
Uruguay
37,304
Belarus
37,907
Georgia
38,278
Germany
40,062
Greece
40,399
Argentina
42,552
UK
47,297
Norway
47,549
Hong Kong
50,186
Canada
51,703
Moldova
53,684
Peru
67,412
Ukraine
68,068
Denmark
74,253
Poland
77,013
USA
82,379
Chile
87,952
Russia
89,325
91,277
Taiwan
91,392
Ireland
93,133
Kazakhstan
110,510
Tunisia
110,972
Jamaica
122,984
Bolivia
136,452
Dominican Republic
137,342
Ecuador
172,765
Uzbekistan
194,499
South Korea
198,537
Turkey
201,865
Colombia
252,955
Morocco
261,666
Thailand
273,979
South Africa
310,012
Puerto Rico
372,915
Brazil
393,057
Costa Rica
437,383
Paraguay
467,812
El Salvador
503,427
Cuba
504,808
Egypt
589,345
Mexico
594,362
Ghana
613,181
Algeria
856,456
Vietnam
1,007,298
Philippines
1,016,413
Malaysia
1,174,508
Iran
1,176,999
Guatemala
1,716,578
Haiti
1,734,389
Kenya
1,929,033
China
2,769,988
India
2,778,570
Ivory Coast
4,064,197
Indonesia
5,978,123
Nigeria
6,432,923
  • Football

  • Ice Hockey

  • Basketball

  • Tennis

  • MMA

  • Golf

  • Athletics

  • Cycling

Scroll to select filter
International Results
Percentage of top tier athletes globally Odds of being a top tier athlete (1:X)
# Country Country Code
13 Guyana GUY - - - - 0.27 - - - 0 0 0 0 130,535 0 0 0
52 Suriname SUR - - - - 0.27 - - - 0 0 0 0 63,939 0 0 0
69 Albania ALB 0.18 0.00 0.01 0.00 0.00 0.00 0.03 0.30 5,150 0 272,912 0 0 0 38,988 45,486
70 Argentina ARG 4.38 0.00 3.77 3.76 0.53 0.90 0.35 0.10 3,626 0 13,198 42,552 2,276,485 267,823 57,634 2,276,485
71 Australia AUS 1.01 1.57 1.26 1.26 1.59 6.27 2.59 2.40 5,838 12,356 14,719 21,983 282,104 14,225 2,894 35,264
72 Austria AUT 1.12 0.72 1.10 1.26 0.53 0.69 0.36 1.15 1,770 9,015 5,624 15,776 283,946 43,685 7,012 24,692
73 Belgium BEL 1.20 0.76 1.43 1.54 0.00 0.26 0.91 7.00 2,260 11,809 5,950 17,713 0 155,862 3,784 5,567
74 Bulgaria BGR 1.18 1.23 0.07 0.88 0.53 0.00 0.27 0.70 1,470 4,670 83,268 19,985 249,802 0 8,191 35,687
75 Bahamas BHS 0.00 0.00 0.08 0.11 0.00 0.00 0.33 0.00 0 0 5,326 12,427 0 0 505 0
76 Bosnia BIH 0.50 0.00 0.75 0.35 0.27 0.00 0.08 0.45 1,421 0 2,964 20,443 204,417 0 10,760 22,714
77 Belarus BLR 0.06 2.31 0.20 0.63 0.27 0.00 0.79 0.85 40,136 3,379 37,907 37,907 682,304 0 3,834 40,136
78 Bolivia BOL 1.53 0.00 0.00 0.42 0.00 0.00 0.08 0.00 3,731 0 0 136,452 0 0 86,181 0
79 Brazil BRA 5.14 0.00 2.77 2.07 13.79 0.16 1.29 0.00 15,713 0 91,301 393,057 445,968 7,730,098 79,420 0
80 Barbados BRB 0.00 0.00 0.01 0.04 0.00 0.00 0.18 0.00 15,738 0 15,738 15,738 0 0 394 0
81 Canada CAN 0.69 11.36 1.39 1.37 1.86 1.21 1.86 0.70 10,185 2,036 15,878 51,703 288,053 87,669 4,802 144,027
82 Switzerland CHE 0.81 2.23 0.14 1.47 0.53 0.53 0.90 2.00 2,298 2,734 40,993 12,689 266,448 53,291 2,626 13,323
83 Chile CHL 1.75 0.00 0.07 0.70 0.00 0.42 0.20 0.00 3,512 0 293,170 87,952 0 219,878 38,240 0
84 China CHN 1.36 0.01 3.92 1.58 0.80 2.16 3.30 0.00 319,615 124,649,428 347,214 2,769,988 41,549,810 3,040,231 167,091 0
85 Ivory Coast CIV 0.42 0.00 0.14 0.04 0.00 0.00 0.04 0.10 33,589 0 312,631 4,064,197 0 0 508,025 2,032,099
86 South Africa ZAF 1.46 0.00 0.01 0.77 0.27 7.80 1.41 1.05 16,240 0 6,820,247 310,012 6,820,247 46,084 21,314 324,775
87 Vietnam VNM 0.00 0.00 0.00 0.11 0.00 0.00 0.10 0.00 0 0 0 1,007,298 0 0 137,360 0
88 Cameroon CMR 0.37 0.00 0.11 0.00 0.27 0.00 0.09 0.20 37,325 0 395,634 0 3,956,335 0 197,818 989,085
89 Colombia COL 3.23 0.00 0.09 0.81 0.00 0.42 0.42 3.85 6,284 0 727,244 252,955 0 727,244 61,894 75,559
90 Costa Rica CRI 1.06 0.00 0.00 0.04 0.00 0.00 0.08 0.10 1,440 0 0 437,383 0 0 23,021 218,692
91 Uzbekistan UZB 0.04 0.00 0.00 0.60 0.27 0.00 0.20 0.15 300,588 0 0 194,499 3,306,461 0 71,881 1,102,154
92 Cuba CUB 0.01 0.00 0.13 0.07 0.00 0.00 0.39 0.05 252,405 0 84,136 504,808 0 0 11,345 1,009,615
93 Cyprus CYP 0.03 0.00 0.13 0.14 0.00 0.00 0.19 0.05 6,970 0 5,228 15,681 0 0 1,494 62,719
94 USA USA 1.42 5.66 26.42 9.59 38.73 23.09 21.99 2.25 55,393 45,526 9,298 82,379 154,037 51,346 4,520 499,762
95 Czech Republic CZE 1.84 5.69 1.96 2.00 0.80 0.32 1.15 1.30 1,276 1,355 3,761 11,810 224,377 112,189 2,590 25,891
96 Germany DEU 1.42 1.09 1.81 4.53 0.53 2.48 2.95 3.25 12,667 54,399 31,133 40,062 2,583,925 109,955 7,737 79,506
97 Denmark DNK 1.16 2.46 0.17 0.21 0.53 2.00 0.44 2.45 1,343 2,073 27,845 74,253 222,756 11,725 4,501 9,093
98 Uruguay URY 2.60 0.00 0.17 0.32 0.00 0.00 0.06 0.55 451 0 20,984 37,304 0 0 25,826 30,522
99 Dominican Republic DOM 0.01 0.00 0.42 0.35 0.00 0.05 0.05 0.00 686,706 0 36,143 137,342 0 1,373,411 57,226 0
100 Algeria DZA 2.39 0.00 0.00 0.11 0.00 0.00 0.24 0.30 3,741 0 0 856,456 0 0 47,582 428,228
101 Ecuador ECU 1.60 0.00 0.01 0.42 0.27 0.00 0.22 0.85 4,508 0 2,073,173 172,765 2,073,173 0 42,311 121,952
102 Egypt EGY 0.07 0.00 0.01 0.67 0.00 0.00 0.19 0.05 589,345 0 11,197,542 589,345 0 0 260,409 11,197,542
103 Spain ESP 2.47 1.32 1.28 4.78 0.53 2.16 2.95 5.20 3,677 22,632 22,245 19,138 1,301,294 63,479 3,897 25,026
104 Estonia EST 0.05 1.05 0.99 0.42 0.00 0.05 0.39 0.90 6,705 1,021 1,032 7,822 0 93,853 1,068 5,215
105 Ethiopia ETH 0.01 0.00 0.00 0.00 0.00 0.00 1.81 0.60 8,842,898 0 0 0 0 0 43,243 1,473,817
106 Finland FIN 0.90 6.93 1.30 0.63 0.00 0.90 1.16 0.70 1,166 498 2,527 16,699 0 17,681 1,144 21,470
107 France FRA 2.35 2.37 2.02 6.53 0.80 3.64 3.38 7.65 7,363 23,936 26,783 26,639 1,651,535 71,807 6,486 32,384
108 UK GBR 2.65 1.01 1.05 3.58 3.18 10.17 3.93 2.60 6,357 54,821 50,253 47,297 402,013 24,997 5,421 92,773
109 Georgia GEO 0.16 0.64 0.64 0.28 1.06 0.00 0.04 0.30 6,658 5,469 2,375 38,278 76,554 0 34,025 51,037
110 Ghana GHA 0.61 0.00 0.01 0.25 0.00 0.00 0.13 0.00 24,528 0 4,292,264 613,181 0 0 143,076 0
111 Greece GRC 0.98 0.00 1.41 0.60 0.00 0.05 0.77 0.70 2,445 0 5,325 40,399 0 686,768 3,925 49,056
112 Guatemala GTM 0.01 0.00 0.00 0.04 0.00 0.05 0.11 0.55 572,193 0 0 1,716,578 0 1,716,578 68,664 156,053
113 Hong Kong HKG 0.01 0.00 0.01 0.28 0.00 0.16 0.06 0.00 200,741 0 401,480 50,186 0 133,827 30,884 0
114 Croatia HRV 1.37 1.48 1.23 1.30 0.00 0.00 0.33 0.70 802 2,442 2,787 8,510 0 0 4,199 22,490
115 Haiti HTI 0.04 0.00 0.03 0.04 0.27 0.00 0.02 0.00 157,673 0 578,130 1,734,389 1,734,389 0 346,879 0
116 Hungary HUN 0.99 2.31 1.69 0.70 0.27 0.00 0.71 0.85 2,504 3,508 4,571 35,421 708,405 0 4,401 41,672
117 Indonesia IDN 0.02 0.00 0.00 0.18 0.00 0.21 0.06 0.00 4,981,770 0 0 5,978,123 0 7,472,654 2,135,045 0
118 India IND 1.75 0.00 0.00 2.28 0.00 2.64 1.07 0.00 360,494 0 0 2,778,570 0 3,612,141 743,240 0
119 Ireland IRL 0.87 0.00 0.00 0.21 0.53 0.79 0.86 0.40 2,236 0 0 93,133 279,396 37,254 2,867 69,850
120 Iran IRN 1.55 0.00 1.40 0.14 0.27 0.00 0.22 0.40 10,605 0 36,782 1,176,999 4,707,991 0 96,082 588,500
121 Iceland ISL 1.13 0.78 0.07 0.00 0.00 0.16 0.12 0.60 82 388 4,381 0 0 8,762 940 2,191
122 Israel ISR 0.12 1.02 1.43 0.95 0.00 0.00 0.30 0.65 23,842 9,377 6,371 30,906 0 0 12,094 64,188
123 Italy ITA 1.10 1.90 1.66 7.13 0.27 1.53 2.59 9.30 11,529 21,877 23,892 17,890 3,631,378 125,221 6,208 19,525
124 Jamaica JAM 0.08 0.00 0.08 0.04 0.53 0.00 1.90 0.00 5,348 0 17,570 122,984 61,492 0 286 0
125 Japan JPN 1.79 0.54 2.57 3.05 1.06 7.96 7.84 0.65 15,420 168,958 33,792 91,277 1,985,246 52,590 4,477 610,846
126 Kazakhstan KAZ 0.03 1.02 0.10 0.56 0.53 0.00 0.28 0.90 176,816 19,868 196,462 110,510 884,076 0 27,628 98,232
127 South Korea KOR 1.35 0.30 1.76 1.23 1.59 6.91 0.51 0.00 17,910 267,261 43,161 198,537 1,158,126 53,045 59,904 0
128 Kenya KEN 0.04 0.00 0.03 0.14 0.00 0.05 4.32 0.05 701,467 0 2,572,044 1,929,033 0 7,716,130 7,899 7,716,130
129 Lithuania LTU 0.04 1.39 2.14 0.46 0.27 0.00 0.00 0.55 22,121 2,195 1,355 20,420 265,446 0 3,124 24,132
130 Luxembourg LUX 0.06 0.00 1.63 0.07 0.00 0.00 0.07 0.80 1,949 0 210 15,589 0 0 1,949 1,949
131 Latvia LVA 0.05 1.15 1.50 0.28 0.27 0.00 0.27 0.55 11,713 1,524 1,112 19,033 152,256 0 2,457 13,842
132 Morocco MAR 0.33 0.00 0.02 0.49 0.00 0.11 0.95 0.15 38,972 0 1,831,653 261,666 0 1,831,653 16,961 1,221,102
133 Moldova MDA 0.07 0.00 0.01 0.18 0.80 0.00 0.08 0.00 12,783 0 268,418 53,684 89,473 0 15,790 0
134 Mexico MEX 1.73 0.80 0.95 0.91 0.27 0.47 0.63 0.75 31,220 220,764 177,626 594,362 15,453,390 1,717,044 108,067 1,030,227
135 Macedonia MKD 0.19 0.00 0.12 0.21 0.00 0.00 0.00 0.45 3,207 0 15,741 28,858 0 0 0 19,239
136 Montenegro MNE 0.25 0.00 2.57 0.00 0.00 0.00 0.03 0.45 258 0 79 0 0 0 2,604 2,026
137 Malaysia MYS 0.02 0.00 0.00 0.11 0.00 0.58 0.14 0.10 704,705 0 0 1,174,508 0 320,321 113,663 1,761,762
138 Namibia NAM 0.02 0.00 0.00 0.04 0.00 0.00 0.08 0.55 3,236 0 0 22,644 0 0 1,259 2,059
139 Nigeria NGA 3.44 3.44 0.39 0.18 0.27 0.00 0.69 0.00 32,622 0 893,462 6,432,923 32,164,612 0 204,871 0
140 Netherlands NLD 1.81 0.85 0.25 2.18 0.80 0.79 1.21 5.65 2,539 17,802 57,275 21,248 439,098 87,820 4,826 11,658
141 Norway NOR 1.50 2.48 0.00 0.25 0.27 0.63 0.71 1.95 777 1,542 0 47,549 332,834 27,737 2,068 8,535
142 New Zealand NZL 0.14 1.47 1.74 0.46 1.06 0.90 0.64 2.80 9,312 2,983 2,402 29,367 95,440 22,457 2,652 6,818
143 Panama PAN 0.09 0.00 0.04 0.00 0.00 0.00 0.05 0.60 16,006 0 104,032 0 0 0 37,830 34,678
144 Peru PER 1.88 1.88 0.01 0.53 0.00 0.00 0.19 0.00 1,880 0 1,011,166 67,412 0 0 23,516 0
145 Philippines PHL 0.00 0.00 1.85 0.21 0.27 0.32 0.08 0.00 6,098,472 0 36,087 1,016,413 6,098,472 1,016,413 338,805 0
146 Poland POL 1.47 0.26 2.34 1.30 3.18 0.11 1.91 1.85 6,753 123,890 13,316 77,013 237,455 1,424,727 6,597 77,013
147 Puerto Rico PRI 0.01 0.00 0.83 0.04 0.00 0.05 0.24 0.50 186,458 0 4,908 372,915 0 372,915 6,781 37,292
149 Portugal PRT 1.40 0.00 0.01 1.16 0.00 0.47 0.87 1.45 1,889 0 760,961 23,060 0 84,552 3,883 26,241
151 Paraguay PRY 1.36 0.00 0.02 0.07 0.27 0.05 0.03 0.00 2,400 0 467,812 467,812 935,623 935,624 133,661 0
153 Romania ROU 1.47 0.72 0.01 1.79 0.00 0.00 0.49 0.05 3,766 25,220 1,588,807 31,154 0 0 14,187 1,588,807
155 Russia RUS 1.38 17.30 1.17 3.65 13.53 0.00 2.01 2.20 23,401 6,153 86,821 89,325 182,152 0 20,463 211,131
157 Saudi Arabia SAU 2.62 0.00 0.00 0.00 0.00 0.00 0.07 0.60 4,866 0 0 0 0 0 228,960 305,280
159 Senegal SEN 0.46 0.00 0.45 0.00 0.00 0.00 0.06 0.00 3,136 0 10,094 0 0 0 31,833 0
161 El Salvador SLV 0.02 0.00 0.01 0.07 0.00 0.00 0.02 0.60 143,837 0 1,006,852 503,427 0 0 251,714 83,905
163 Serbia SRB 2.63 0.76 3.41 1.47 0.27 0.00 0.30 0.65 546 6,233 1,319 9,794 411,314 0 6,050 31,640
165 Slovakia SVK 1.13 4.74 0.16 1.23 0.00 0.05 0.25 0.65 1,075 839 23,135 9,916 0 347,011 6,089 26,694
167 Slovenia SVN 0.23 2.58 2.06 0.46 0.00 0.00 0.35 0.90 1,924 557 662 9,617 0 0 1,583 6,946
169 Sweden SWE 1.55 6.21 0.20 1.40 1.33 4.38 1.16 0.70 1,528 1,252 37,670 16,952 135,609 8,170 2,579 48,433
171 Thailand THA 0.02 0.00 0.00 0.81 0.00 3.37 0.11 0.55 1,050,249 0 0 273,979 0 98,462 242,366 572,864
173 Trinidad & Tobago TTO 0.06 0.00 0.02 0.00 0.00 0.00 0.30 0.00 7,947 0 63,566 0 0 0 1,898 0
174 Tunisia TUN 1.51 0.00 0.13 0.39 0.00 0.00 0.09 0.00 2,814 0 101,725 110,972 0 0 61,035 0
175 Turkey TUR 1.62 0.00 1.81 0.81 0.00 0.00 0.84 0.55 10,007 0 27,970 201,865 0 0 24,309 422,079
177 Taiwan TWN 0.01 0.00 0.00 0.74 0.00 0.79 0.37 0.00 639,736 0 0 91,392 0 127,948 22,849 0
178 Ukraine UKR 1.71 1.51 1.57 1.62 0.80 0.00 1.22 0.80 6,365 23,721 21,745 68,068 1,043,698 0 11,387 195,694

Methodology

The Professional Athlete Index analyses eight globally popular team and individual sports. For each sport, a list of top tier male competitors from the latest completed season or ranking was gathered.

For team sports, player data was taken from every team playing in the top domestic league of the world’s 35 highest ranked nations. For individual sports, the players that feature in each sport’s international association ranking were included.

The athletes were assigned to countries based on their nationality. In cases of multiple nationalities, the athletes were assigned to their country of birth.

To calculate the odds of being a top tier athlete, we compared the number of top tier athletes from each country with that country’s number of births over a 12-year period – representing a typical length of a sporting career at the top level. The odds represent the chances of someone born during that period making it to the elite level of each sport.

  • Percentage of top tier athletes

    This percentage was calculated using the following equation:
    Total number of top tier athletes from each country / Total number of top tier athletes in each sport

  • Odds of being a top tier athlete (1:X)

    The odds were calculated for each country in the study using the following equation:

    1 / (number of top tier athletes from each country / total number of people born in each country over 12-year period) / (number of people born over 12-year period in each country that are not currently top tier athletes / total number of people born in each country over 12-year period)

     

    Source: Male births, years 1991 to 2003, UN Demographic Yearbook.

Sport-Specific Methodology Notes